
UCRL-TR-204637

Climate Model Output Rewriter
(CMOR)

K. E. Taylor, C. Doutriaux, J.-Y. Peterschmitt

June 10, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Climate Model Output Rewriter (CMOR)

Karl E. Taylor, Charles Doutriaux, and Jean-Yves Peterschmitt

11 May 2004

Design Considerations and Overview

This document describes a software library called "Climate Model Output Rewriter"
(CMOR),1 which comprises a set of FORTRAN 90 functions that can be used to produce
CF-compliant2 netCDF3 files. The structure of the files created by CMOR and the
metadata they contain fulfill the requirements of many of the climate community's standard
model experiments (which are referred to here as "MIPs"4 and include, for example,
AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs).

CMOR was not designed to serve as an all-purpose writer of CF-compliant netCDF files,
but simply to reduce the effort required to prepare and manage MIP data. Although MIPs
encourage systematic analysis of results across models, this is only easy to do if the model
output is written in a common format with files structured similarly and with sufficient
metadata uniformly stored according to a common standard. Individual modeling groups
store their data in different ways, but if a group can read its own data with FORTRAN,
then it should easily be able to transform the data, using CMOR, into the common format
required by the MIPs. The adoption of CMOR as a standard code for exchanging climate
data will facilitate participation in MIPs because after learning how to satisfy the output
requirements of one MIP, it will be easy to prepare output for other MIPs.

CMOR output has the following characteristics:

• For data that are a function of longitude and latitude, only grids representable as a
Cartesian product of longitude and latitude axes are allowed. Model output on
other grids, such as "thin" grids, grids with rotated poles, and irregular grids, must

1 CMOR is pronounced "C-more", which suggests that CMOR should enable a wide community of scientists
"see more" climate data produced by modeling centers around the world. CMOR also reminds us of Ecinae
Corianus, the revered ancient Greek scholar, known to his friends as "Seymour". Seymour spent much of his
life translating into Greek nearly all the existing climate data, which had originally been recorded on largely
insrutable hieroglyphic and cuneiform tablets. His resulting volumes, organized in a uniform fashion and in
a language readable by the common scientists of the day, provided the basis for much subsequent scholarly
research. Ecinae Corianus was later indirectly honored by early inhabitants of the British Isles who reversed
the spelling of his name and used the resulting string of letters, grouped differently, to form new words
referring to the major elements of climate.
2 See http://www.cgd.ucar.edu/cms/eaton/cf-metadata
3 See http://my.unidata.ucar.edu/content/software/netcdf/
4 "MIP" is an acronym for "model intercomparison project".

 1

http://www.cgd.ucar.edu/cms/eaton/cf-metadata
http://my.unidata.ucar.edu/content/software/netcdf/

be mapped to a longitude-latitude Cartesian grid before being passed to CMOR.
Most of the MIPs and most diagnostic software also impose this constraint.5

• Each file contains a single output variable (along with coordinate variables,
attributes and other metadata) from a single model and a single simulation (i.e.,
from a single ensemble member of a single climate experiment). This method of
structuring model output efficiently serves the needs of most researchers who are
typically interested in only a few of the many variables in the MIP databases. Data
requests can be satisfied by simply sending the appropriate file(s) without first
extracting the individual field(s) of interest.

• There is flexibility in specifying how many time slices (samples) are stored in a
single file. A single file can contain all the time-samples for a given variable and
climate experiment, or the samples can be distributed in a series of files.

• For metadata, different MIPs may have different requirements, but these are
accommodated by CMOR, within the constraints of the CF convention.

• Much of the metadata written to the output files is defined in MIP-specific tables of
information, which in this document are referred to simply as "MIP tables". These
tables are ASCII files that can be read by CMOR and are typically made available
from MIP web sites. Because these tables contain much of the metadata that is
useful in the MIP context, they are the key to reducing the programming burden
imposed on the individual users contributing data to a MIP. Additional tables can
be created as new MIPs are born.

Although the CMOR output adheres to a fairly rigid structure, there is considerable
flexibility allowed in the design of codes that write data through the CMOR functions.
Depending on how the source data are stored, one might want to structure a code to read
and rewrite the data through CMOR in several different ways. Consider, for example, a
case where data are originally stored in "history" files that contain many different fields,
but a single time sample. If one were to process several different fields through CMOR
and one wanted to include many time samples per file, then it would usually be more
efficient to read all the fields from the single input file at the same time, and then distribute
them to the appropriate CMOR output files, rather than to process all the time-samples for
a single field and then move on to the next field. If, however, the original data were stored
already by field (i.e., one variable per file), then it would make more sense to simply loop
through the fields, one at a time. The user is free to structure the conversion program in
either of these ways (among others).

Converting data with CMOR typically involves the following steps (with the CMOR
function names given in parentheses):

• Initialize CMOR and specify where output will be written and how error messages
will be handled (cmor_setup).

• Provide information directing where output should be placed and identifying the
data source, project name, experiment, etc. (cmor_dataset).

5 The CMOR capabilities may be extended in the future to support other types of grids, but this would be
expected to require a substantial programming effort.

 2

• Define the axes (i.e., the coordinate values) associated with each of the dimensions
of the data to be written and obtain "handles", to be used in the next step, which
uniquely identify the axes (cmor_axis).

• Define the variables to be written by CMOR, indicate which axes are associated
with each variable, and obtain "handles", to be used in the next step, which
uniquely identify each variable (cmor_variable). For each variable defined, this
function fills internal table entries containing file attributes passed by the user or
obtained from a MIP table, along with coordinate variables and other related
information. Thus, nearly all of the file's metadata is collected during this step.

• Write an array of data that includes one or more time samples for a defined variable
(cmor_write). This step will typically be repeated to output additional variables or
to append additional time samples of data.

• Close one or all files created by CMOR (cmor_close)

There is an additional function (cmor_zfactor), which enables one to define metadata
associated with dimensionless vertical coordinates.

CMOR was designed to reduce the effort required of those contributing data to various
MIPs. An important aim was to minimize any transformations that the user would have to
perform on the original data to prepare it to meet MIP requirements. Toward this end, the
code allows the following flexibility (with the MIP requirements obtained by CMOR from
the appropriate MIP table):

• The input data can be structured with dimensions in any order and with coordinate
values either increasing or decreasing monotonically; CMOR will rearrange them
to meet the MIP's requirements before writing out the data.

• In many cases, the input data and coordinate values can be provided in an array
declared to be whatever "type" is convenient for the user (e.g., in the case of
coordinate data, the user might pass type “real” values (32-bit floating-point
numbers on most platforms) even though the output will be written type double
(64-bit IEEE floating-point); CMOR can transform the data to the required type
before writing.

• The input data can be provided in units different from what is required by a MIP; if
those units can be transformed to the correct units using the udunits software (see
http://my.unidata.ucar.edu/content/software/udunits/), then CMOR performs the
transformation before writing the data. Otherwise, CMOR will return an error. To
enable this capability, the user will have to obtain udunits and, for time
transformations, cdms (???).

• So-called "scalar dimensions" (sometimes referred to as "singleton dimensions")
are automatically inserted by CMOR. Thus, for example, the user can provide
surface air temperature (at 2 meters) as a function of longitude, latitude, and time,
and CMOR adds as a "coordinate" attribute the "height" dimension, consistent with
the metadata requirements of CF. If the model output does not conform with the
MIP requirements (e.g., carries temperature at 1.5 m instead of 2 m), then the user
can override the table specifications.

 3

http://my.unidata.ucar.edu/content/software/udunits/

The code does not, however, include a capability to interpolate data, either in the vertical
or horizontally. If a user stores data on model levels, but a MIP requests it on standard
pressure levels, then the user must interpolate before passing the data to CMOR.
Similarly, if the data are originally stored on a non-Cartesian longitude-latitude grid, then
the user must map the data to a Cartesian grid before passing it to CMOR.

The output resulting from CMOR is "self-describing" and includes metadata summarized
below, organized by attribute type (global, coordinate, or variable attributes) and by its
source (specified by the user or in a MIP table, or generated by CMOR).

Global attributes typically provided by the MIP table or generated by CMOR:

• title, identifying the project, experiment, and table.
• Conventions, ('CF-1.0')
• history, including any user-provided history along with a "timestamp"

generated by CMOR and a statement that the data conform with both the CF
standards and those of a particular MIP.

Global attributes typically provided by the user in a call to a CMOR function:

• institution, identifying the modeling center contributing the output.
• source, identifying the model version that generated the output.
• contact, providing the name and email of someone responsible for the data
• history, providing an "audit trail" for the data, which will be supplemented with

CMOR-generated information described above.
• references, typically containing documention of the model and the model

simulation.
• comment, typically including initialization and spin-up information for the

simulation.

Coordinate attributes typically provided by a MIP table or generated by CMOR:

• standard_name, as defined in the CF standard name table.
• units, specifying the units for the coordinate variable.
• axis, indicating whether axis is of type x, y, z, t, or none of these.
• bounds, (when appropriate) indicating where the cell bounds are stored.
• positive, (when appropriate) indicating whether a vertical coordinate increases

upward or downward.
• formula_terms, (when appropriate) providing information needed to transform

from a dimensionless vertical coordinate to the actual location (e.g., from sigma-
level to pressure).

Coordinate attributes typically provided by the user in a call to a CMOR function:

 4

• calendar, (when appropriate) indicating the calendar type assumed by the
model.

Variable attributes typically provided by a MIP table or generated by CMOR:

• standard_name as defined in the CF standard name table.
• units, specifying the units for the variable.
• long_name, describing the variable and useful as a title on plots.
• missing_value and _FillValue, specifying how missing data will be

identified.
• cell_methods, (when appropriate) typically providing information concerning

calculation of means or climatologies, which may be supplemented by information
provided by the user.

• comment, providing clarifying information concerning the variable (e.g., whether
precipitation includes both liquid and solid forms of precipitation).

• history, indicating what CMOR has done to the user supplied data (e.g.,
transforming its units or rearranging its order to be consistent with the MIP
requirements)

• coordinates, (when appropriate) supplying either scalar (singleton) dimension
information or the name of the labels containing names of geographical regions.

Variable attributes typically provided by the user in a call to a CMOR function:

• original_name, containing the name of the variable as it is known at the user's
home institution.

• original_units, the units of the data passed to CMOR.
• history, (when appropriate) information concerning processing of the variable

prior to sending it to CMOR. (This information may be supplemented by further
history information generated by CMOR.)

• comment, (when appropriate) providing miscellaneous information concerning the
variable, which will supplement any comment contained in the MIP table.

As is evident from the above summary of metadata, a substantial fraction of the
information is defined in the MIP tables, which explains why writing MIP output through
CMOR is much easier than writing data without the help of the MIP tables. Besides the
attribute information, the MIP tables also include information that controls the structure of
the output and allows CMOR to apply some rudimentary quality assurance checks.
Among this ancillary information in the MIP tables is the following:

• The direction each coordinate should be stored when it is output (i.e., either in
order of increasing or decreasing values). The user need not be concerned with this
since, if necessary, CMOR will reorder the coordinate values and the data.

• The acceptable values for coordinates (e.g., for a pressure coordinate axis, for
example, perhaps the WCRP standard pressure levels).

 5

• The acceptable values for various arguments passed to CMOR functions (e.g.,
acceptable calendars, experiment i.d.'s, etc.)

• The "type" of each output array (whether real, double precision, or integer). The
user need not be concerned with this since, if necessary, CMOR will convert the
data to the specified type.

• The order of the dimensions for output arrays. The user need not be concerned with
this since, if necessary, CMOR will reorder the data consistent with the specified
dimension order.

• The appropriate values for "scalar dimensions" (i.e., "singleton dimensions").
• The range of acceptable values for output arrays.
• The acceptable range for the spatial mean of the absolute value of all elements in

output arrays.

Acknowledgements

Several individuals have supported the development of this software and provided
encouragement, including Dean Williams, Dave Bader, and Peter Gleckler. Jonathan
Gregory, Jim Boyle, and Bob Drach all provided valuable suggestions on how to simplify
or in other ways improve the design of this software, and we particularly appreciate the
time they spent reading and thinking about this problem. Jim Boyle additionally helped in
a number of other ways, including porting CMOR to various platforms. Finally, we
appreciate the encouratement expressed by the WGCM for developing CMOR.

 6

Description of CMOR Functions

Note: In the following, all arguments should be passed using keywords (to improve

readability and flexibility in ordering the arguments). Those arguments appearing
below that are followed by an equal sign are optional and, if not passed by the user,
are assigned the default value that follows the equal sign. The information in a
MIP-specific input table determines whether or not an argument shown in brackets
is optional or required, and provides MIP-specific default values for some
parameters. All arguments not in brackets and not followed by an equal sign are
always required.

error_flag = cmor_setup(inpath='./', netcdf_file_action='preserve', set_verbosity=2,

exit_control=2)

Description: Initialize CMOR, specify path to MIP table(s) that will be read by
CMOR, specify whether existing output files will be overwritten, and specify how
error messages will be handled.

Arguments:
[inpath] = path to directory where the needed MIP-specific tables reside.
[netcdf_file_action] = controls handling of existing netCDF files. If the value

passed is 'replace', any existing file with the same name as the one CMOR
is trying to create will be overwritten; if the file does not exist, it will be
created. If value is 'append', an existing file will be appended; if the file
does not exist, it will be created. If value is 'preserve', the program will
error exit if the file exists.

 [set_verbosity] controls how informational messages and error messages generated
by CMOR are handled. Only the most important messages will be sent to a
"summary log." All messages will be sent to the "detailed log" and also, if
set_verbosity = 2, they will be sent to the standard output device (typically
the user's screen). If set_verbosity = 1, only error messages will be sent to
standard output, and if set_verbosity = 0, then all CMOR output to standard
output will be suppressed. This optional argument is ignored in the beta
release of CMOR.

[exit_control] determines if errors will trigger program to exit (0=never stop;
1=stop only if severe errors; 2=stop even after minor errors detected). This
optional argument is ignored in the beta release of CMOR.

returns: a negative integer if an error is encountered; otherwise returns 0.

error_flag = cmor_dataset(outpath, experiment_id, institution, source, calendar,
realization=1, [contact], [history], [comment], [references], [leap_year],
[leap_month], [month_lengths])

Description: This function provides information to CMOR that is common to all
output files that will be written. The "dataset" defined by this function refers to
some or all of the output from a single model simulation (i.e., output from a single

 7

realization of a single experiment from a single model). Only one dataset can be
defined at any time, but the dataset can be closed (by calling cmor_close()), and
then another dataset can be defined by calling cmor_dataset.

Arguments:
outpath = path where all output files in this dataset will be written (including both

model output netCDF files and log and error files). The user should never
put into a single subdirectory output from more than one experiment (e.g.,
AMIP and CMIP) or more than one model (e.g., two different models from
the same modeling center) or more than one realization of an ensemble of
simulations. It is also suggested that in most cases the user refrain from
placing output defined by different tables in the same directory. An
example of a reasonably descriptive directory structure that would be
acceptable is: '[pathroot]/CMIP_1percent/member_1/table_1'. The
directories in this path indicate the experiment (1% per year increase of
CO2), the member of the ensemble of simulations that is stored there (the
first member), and the CMIP table name. (Note that if output listed in more
than 1 table of the dataset will be written in a single pass, then it would be
inappropriate to include the table name in the path.)

experiment_id = character string identifying the experiment within the project that
generated the data (e.g., 'control', 'perturbation', etc.) See individual MIP
home pages for the official experiment designations (or see the MIP-table
list of "expt_id_ok" acceptable i.d.'s.

institution = character string identifying the institution that generated the data [e.g.,
'NCAR (National Center for Atmospheric Research, Boulder, CO, USA)']

source = character string identifying the model version as it is referred to in public
talks. Additionally, this attribute must include the year (i.e., model vintage)
when this model version was first used in a scientific application. Finally, it
should include information concerning the component models. The
following template should be used in constructing this string:
'[model_name] [year] atmosphere: [model_name] ([technical_name],
[resolution_and_levels]); ocean: [model_name] ([technical_name],
[resolution_and_levels]); sea ice: [model_name] ([technical_name]); land:
[model_name] ([technical_name])'' As an example, "source" might contain
the string: 'CCSM2 2002 atmosphere: CAM2 (cam2_0_brnchT_itea_2,
T42L26); ocean: POP (pop2_0_ver_1.4.3, 2x3L15); sea ice: CSIM4; land:
CLM2.0'. For some MIP's it might be appropriate to list only a single
component, in which case the descriptor (e.g., 'atmosphere') may be omitted
along with the other model components (e.g., 'CAM2 2002
(cam2_0_brnchT_itea_2, T42L26)'. Additional explanatory information
may follow the required information.

calendar = CF-compliant calendar specification (e.g., 'gregorian', 'noleap', etc.)
This argument must be included even in the case of a non-standard
calendar, in which case it must not be given one of the calendars currently
defined by CF ('gregorian', 'standard', 'proleptic_gregorian', 'noleap',
'365_day', '360_day', 'julian', and 'none'), and it must not be completely

 8

blank or a null string. It would be acceptable, for example, to assign
'non_standard' to this argument in the case of a non-standard calendar.

[realization] = an integer distinguishing among members of an ensemble of
simulations (e.g., 1, 2, 3, etc.). If only a single simulation was performed,
then this argument should be given the value 1 (which is also the default
value).

[contact] = name and contact information (e.g., email, address, phone number) of
person who should be contacted for more information about the data.

[history] = audit trail for modifications to the original data, each modification
typically preceded by a "timestamp". The "history" attribute provided here
will be a global one and should not depend on which variable is contained
in the file. A variable-specific "history" can also be included in calling
cmor_variable, described below.

[comment] = miscellaneous information about the data or methods used to produce
it. Each MIP may encourage the user to provide different information here.
For example, the user may be asked to include a description of how the
initial conditions for a simulation were specified and how the model was
spun-up (including the length of the spin-up period).

[references] = Published or web-based references that describe the data or methods
used to produce it. Typically, the user should provide references describing
the model formulation here.

[leap_year] = for non-standard calendars (otherwise omit), an integer, indicating an
example of a leap year.

[leap_month] = for non-standard calendars (otherwise omit), an integer in the range
1-12, specifying which month is lengthened by a day in leap years
(1=January).

[month_lengths] = for non-standard calendars (otherwise omit), an integer vector of
size 12, specifying the number of days in the months from January through
December (in a non-leap year).

returns: a negative integer if an error is encountered; otherwise returns 0.

axis_id = cmor_axis(table, table_entry, units, [length], [coord_vals], [cell_bounds],

[interval])

Description: Define an axis and pass the coordinate values associated with one of
the dimensions of the data to be written. This function returns a "handle" (axis_id)
that uniquely identifies the axis to be written. The axis_id will subsequently be
passed by the user to other CMOR functions. The cmor_axis function will
typically be repeatedly invoked to define all axes. There normally is no need to call
this function in the case of a singleton (scalar) dimension unless the MIP
recommended (or required) coordinate value (or cell_bounds) are inconsistent with
what the user can supply, or unless the user wants to define the "interval" attribute.

Arguments:

 9

table = character string containing the filename of the MIP-specific table where the
axis defined her appears. (e.g., 'IPCC_table_A1', 'AMIP_table_1a',
'AMIP_table_2', 'CMIP_table_2', etc.)

table_entry = name of the axis (as it appears in the MIP table) that will be defined
by this function.

units = units associated with the coordinates passed in coord_vals and cell_bounds.
(These are the units of the user's coordinate values, which, if CMOR is built
with udunits may differ from the units of the coordinates written to the
netCDF file by CMOR. For non-standard calendars (e.g., models with no
leap year), conversion of time values can be made only if CMOR is built
with CDMS.) . These units must be recognized by udunits or must be
identical to the units specified in the MIP table. In the case of a
dimensionless vertical coordinate or in the case of a non-numerical axis
(like geographical region), either set units='none', or, optionally, set
units='1'.

[length] = integer specifying the length of the dimension. This argument is
required except when either the declared size of coord_vals is equal to
length or coord_vals is absent. As noted below, coord_vals may be absent
only for a time coordinate, in which case the user may choose to indicate
with [length] the number of time samples that will eventually be written by
CMOR before closing the file. This will allow CMOR to determine
whether all the time-samples the user intended to write were in fact written.

[coord_vals] = 1-d array (single precision float, double precision float, or, for
labels, character strings) containing coordinate values, ordered consistently
with the data array that will be passed by the user to CMOR through
function cmor_write (see documentation below). This argument is required
except for a time coordinate, in which case the user may optionally pass the
cordinate values when the cmor_write function is called. If the time
coordinate values will be passed when the cmor_write function is called, the
coord_vals argument must be omitted when cmor_axis is called to define
the time axis. Note that the values must be ordered monotonically (for non-
character strings), so, for example, in the case of longitudes that might have
the values, 0., 10., 20, ... 170., 180., 190., 200., ... 340., 350., passing the
(equivalent) values, 0., 10., 20, ... 170., 180., -170., -160., ... -20., -10. is
forbidden.

[cell_bounds] = 1-d or 2-d array (of the same type as coord_vals) containing cell
bounds, which should be in the same units as coord_vals (specified in the
"units" argument above) and should be ordered in the same way as
coord_vals. In the case of a 1-d array, the size is one more than the size of
coord_vals and the cells must be contiguous. In the case of a 2-d array, it is
dimensioned (2, n) where n is the size of coord_vals (see CF standard
document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further
information). This argument may be omitted when cell bounds are not
required. It must be omitted if coord_vals is omitted.

[interval] = Supplemental information that will be included in the cell_methods
attribute, which is typically defined for the time axis in order to describe the

 10

http://www.cgd.ucar.edu/cms/eaton/cf-metadata

sampling interval. This string should be of the form: "value unit comment:
anything" (where "comment:" and anything may always be omitted). For
monthly mean data sampled every 15 minutes, for example, interval = "15
minutes".

returns: a negative integer if an error is encountered; otherwise returns a positive
integer uniquely identifying the axis being written.

zfactor_id = cmor_zfactor(zaxis_id, zfactor_name, [axis_ids], [units], zfactor_values,

zfactor_bounds)

Description: Define a factor needed to convert a non-dimensional vertical
coordinate (model level) to a physical location. For pressure, height, or depth, this
function is unnecessary, but for dimensionless coordinates it is needed. In the case
of atmospheric sigma coordinates, for example, a scalar parameter must be defined
indicating the top of the model, and the variable containing the surface pressure
must be identified. The parameters that must be defined for different vertical
dimensionless coordinates are listed in Appendix D of the CF convention document
(http://www.cgd.ucar.edu/cms/eaton/cf-metadata). Often bounds for the zfactors
will be needed (e.g., for hybrid sigma coordinates, "A's" and "B's" must be defined
both for the layers and, often more importantly, for the layer interfaces). This
function must be invoked for each z-factor required.

Arguments:
zaxis_id = an integer ("handle") returned by cmor_axis (which must have been

previously called) indicating which axis requires this factor.
zfactor_name = name of the z-factor (as it appears in the MIP table) that will be

defined by this function.
 [axis_ids] = an integer array containing the list of axis_id's (individually defined

by calls to cmor_axis), which the z-factor defined here is a function of (e.g.
for surface pressure, the array of i.d.'s would usually include the longitude,
latitude, and time axes.) The order of the axes must be consistent with the
array passed as param_values. If the parameter is a function of a single
dimension (e.g., model level), the single axis_id should be passed as an
array of rank one and length 1, not as a scalar. If the parameter is a scalar,
then this parameter may be omitted.

[units] = units associated with the z-factor passed in zfactor_values and
zfactor_bounds. (These are the units of the user's z-factors, which may
differ from the units of the z-factors written to the netCDF file by CMOR.) .
These units must be recognized by udunits or must be identical to the units
specified in the MIP table. In the case of a dimensionless z-factors, either
omit this argument, or set units='none', or set units='1'.

zfactor_values = z-factor values associated with dimensionless vertical coordinate
identified by zaxis_id. If this z-factor is a function of time (e.g., surface
pressure for sigma coordinates), the user can omit this argument and instead
store the z-factor values by calling cmor_write. In that case the cmor_write

 11

http://www.cgd.ucar.edu/cms/eaton/cf-metadata

argument, "var_id", should be set to zfactor_id (returned by this function)
and the arguement, "store_with", should be set to the variable id of the
output field that requires zfactor as part of its metadata. When many fields
are a function of the (dimensionless) model level, cmor_write will have to
be called several times, with the same zfactor_id, but with different variable
ids. If no values are passed, omit this argument or set
zfactor_values='none'.

zfactor_bounds = z-factor values associated with the cell bounds of the vertical
dimensionless coordinate. These values should be of the same type as the
zfactor_values (e.g., if zfactor_values is double precision, then
zfactor_bounds must also be double precision). If no bounds values are
passed, omit this argument or set zfactor = 'none'.

returns: a negative integer if an error is encountered; otherwise returns a positive
integer uniquely identifying the z-factor being written.

var_id = cmor_variable(table, table_entry, units, axis_ids, [missing_value], [tolerance],

[positive], [original_name], [history], [comment])

Description: Define a variable to be written by CMOR and indicate which axes are
associated with it. This function prepares CMOR to write the file that will contain
the data for this variable. This function returns a "handle" (var_id), uniquely
identifying the variable, which will subsequently be passed as an argument to the
cmor_write function. The cmor_variable function will typically be repeatedly
invoked to define other variables.

Arguments:
table = character string containing the filename of the MIP-specific table where

table_entry (described next) can be found (e.g., 'IPCC_table_A1',
'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.)

table_entry = name of the variable (as it appears in the MIP table) that this function
defines.

units = units of the data that will be passed to CMOR by function cmor_write.
These units may differ from the units of the data output by CMOR.
Whenever possible, this string should be interpretable by udunits (see
http://my.unitdata.ucar.edu/content/software/udunits/). In the case of
dimensionless quantities the units should be specified consistent with the
CF conventions, so for example: percent, units='percent'; for a fraction,
units='1'; for parts per million, units='1e-6', etc.).

axis_ids = 1-d array containing integers returned by cmor_axis, which specifies the
axes associated with the variable that this function defines. These i.d.'s
should be ordered consistently with the data that will be passed to CMOR
through function cmor_write (see documentation below). Scalar
("singleton") dimensions defined in the MIP table may be omitted, if they
have not been explicitly redefined by the user through calls to cmor_axis. If
the size of the 1-d array is larger than the number of dimensions, the

 12

http://my.unitdata.ucar.edu/content/software/udunits/

'unused' dimension i.d.'s must be set to 0. Note that if a single axis is
passed, it must not be passed as a scalar but as a rank 1 array of length 1.

[missing_value] = scalar that is used to indicate missing data for this variable. It
must be the same type as the data that will be passed to cmor_write. This
missing_value will in general be replaced by a standard missing_value
specified in the MIP table. If there are no missing data, and the user
chooses not to declare the missing value, then this argument may be either
omitted or assigned the value 'none' (i.e., missing_value='none').

[tolerance] = scalar (type real) indicating fractional tolerance allowed in missing
values found in the data. A value will be considered missing if it lies within
±tolerance*missing_value of missing_value. The default tolerance for real
and double precision missing values is 1.0e-4 and for integers 0. This
argument is ignored if the missing_value argument is not present.

[positive] = 'up' or 'down' depending on whether a user-passed vertical energy
(heat) flux or surface momentum flux (stress) input to CMOR is positive
when it is directed upward or downward, respectively. This information
will be used by CMOR to determine whether a sign change is necessary to
make the data consistent with the MIP requirements. This argument is
required for vertical energy fluxes and surface stress, and it is ignored for all
other variables.

[original_name] = the name of the variable as it is commonly known at the user's
home institute. If the variable passed to CMOR was computed in some
simple way from two or more original fields (e.g., subtracting the upwelling
and downwelling fluxes to get a net flux), then it is recommended that this
be indicated in the "original_name" (e.g., "irup – irdown", where "irup" and
"irdown" are the names of the original fields that were subtracted). If more
complicated processing was required, this information would more naturally
be included in a "history" attribute for this variable, described next.

[history] = how the variable was processed before outputting through CMOR (e.g.,
give name(s) of the file(s) from which the data were read and indicate what
calculations were performed, such as interpolating to standard pressure
levels or adding 2 fluxes together). This information should allow someone
at the user's institute to reproduce the procedure that created the CMOR
output. Note that this history attribute is variable-specific, whereas the
history attribute defined by cmor_dataset provides information concerning
the model simulation itself or refers to processing procedures common to all
variables (for example, mapping model output from an irregular grid to a
Cartesian coordinate grid). Note that when appropriate, CMOR will also
indicate in the "history" attribute any operations it performs on the data
(e.g., scaling the data, changing the sign, changing its type, reordering the
dimensions, reversing a coordinate's direction or offsetting longitude). Any
user-defined history will precede the information generated by CMOR.

[comment] = additional notes concerning this variable can be included here.
returns: a negative integer if an error is encountered; otherwise returns a positive

integer uniquely identifying the variable being written.

 13

error_flag = cmor_write(var_id, data, [file_suffix], [ntimes_passed], [time_vals],

[time_bnds], [store_with])

Description: For the variable identified by var_id, write an array of data that
includes one or more time samples. This function will typically be repeatedly
invoked to write other variables or append additional time samples of data. Note
that time-slices of data must be written chronologically.

Arguments:
var_id = integer returned by cmor_variable identifying the variable that will be

written by this function.
data = array of data written by this function (of rank<8). The rank of this array

should either be: (a) consistent with the number of axes that were defined
for it, or (b) it should be 1-dimensional, in which case the data must be
stored contiguously in memory. In case (a), any dimension of size (i.e.,
length) 1 may or may not be included in determining the rank. Thus, for a
variable that is a function of longitude, latitude, and time, for example, if
only a single time-slice is passed to cmor_write, the rank may be declared
as either 2 or 3. Likewise for surface air temperature, which has a singleton
dimension indicating that the height is 2 meters, that dimension may be
omitted from the data array. It is recommended (but not required) that the
shape of data (i.e., the size of each dimension) be consistent with those
expected for this variable (based on the axis definitions). In any case the
dimension sizes (lengths) must not be smaller than those expected.

[file_suffix] = string that will be concatenated with a string automatically generated
by CMOR to form a unique filename where the output is written. This
suffix is only required when a time-sequence of output fields will not all be
written into a single file (i.e., two or more files will contain the output for
the variable). The file prefix generated by CMOR is of the form
variable_table, where variable is replaced by table_entry (i.e., the name of
the variable), and table is replaced by the table number (e.g., tas_A1 refers
to surface air temperature as specified in table A1). If one wanted to break
up the time-sequence of tas fields into several files (each containing one or
more time samples), the user might choose to use the suffix to indicate
which years were stored in each file (e.g., tas_A1_1979-1988,
tas_A1_1989-1998, etc.). Alternatively (and more simply) the user might
simply use the suffix to number the files sequentially (e.g., tas_A1_1,
tas_A1_2, etc.). There are no restrictions on the suffix except that it must
yield unique filenames. If the user supplies a suffix, the leading '_' should
be omiited (e.g., pass '1979-1988', not '_1979-1988'). Note that the suffix
passed through cmor_write remains in effect for the particular variable until
(optionally) redefined by a subsequent call.

[ntimes_passed] = integer number of time slices passed on this call. If omitted, the
number will be assumed to be the size of the time dimension of the data (if
there is a time dimension).

 14

[time_vals] = 1-d array (must be double precision) time coordinate values
associated with the data array. This argument should appear only if the
time coordinate values were not passed in defining the time axis (i.e., in
calling cmor_axis). The units should be consistent with those passed as an
argument to cmor_axis in defining the time axis.

[time_bnds] = 2-d array (must be double precision) containing time bounds, which
should be in the same units as time_vals. If the time_vals argument is
omitted, this argument should also be omitted. The array should be
dimensioned (2, n) where n is the size of time_vals (see CF standard
document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further
information).

[store_with] = integer returned by cmor_variable identifying the variable that the
zfactor should be stored with. This argument must be defined only when
writing a z-factor. (See description of the zfactor function above.)

returns: a negative integer if an error is encountered; otherwise returns 0.

error_flag = cmor_close(var_id=0)

Description: Close a single file specified by optional argument var_id or if the

argument is omitted, close all files created by CMOR (including log files).
To be safe, before exiting any program that invokes CMOR, it is safest to
call this function with the argument omitted (or set to 0).

Arguments:
 [var_id] = a handle (i.e., an integer returned by cmor_variable) identifying an

individual variable (in a specific dataset) and the associated output file that
will be closed by this function.

returns: a negative integer if an error is encountered; otherwise returns 0.

 15

http://www.cgd.ucar.edu/cms/eaton/cf-metadata

Sample Program 1

PROGRAM ipcc_test_code
!
! Purpose: To serve as a generic example of an application that
! uses the "Climate Model Output Rewriter" (CMOR)

! CMOR writes CF-compliant netCDF files.
! Its use is strongly encouraged by the IPCC and is intended for use
! by those participating in many community-coordinated standard
! climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE,
! etc.)
!
! Background information for this sample code:
!
! Atmospheric standard output requested by IPCC are listed in
! tables available on the web. Monthly mean output is found in
! tables A1a and A1c. This sample code processes only two 3-d
! variables listed in table A1c ("monthly mean atmosphere 3-D data"
! and only four 2-d variables listed in table A1a ("monthly mean
! atmosphere + land surface 2-D (latitude, longitude) data"). The
! extension to many more fields is trivial.
!
! For this example, the user must fill in the sections of code that
! extract the 3-d and 2-d fields from his monthly mean "history"
! files (which usually contain many variables but only a single time
! slice). The CMOR code will write each field in a separate file, but
! many monthly mean time-samples will be stored together. These
! constraints partially determine the structure of the code.
!
!
! Record of revisions:

! Date Programmer(s) Description of change
! ==== ========== =====================
! 10/22/03 Rusty Koder Original code
! 1/28/04 Les R. Koder Revised to be consistent
! with evolving code design

! include module that contains the user-accessible cmor functions.
 USE cmor_users_functions

 IMPLICIT NONE

 ! dimension parameters:
 ! ---------------------------------
 INTEGER, PARAMETER :: ntimes = 2 ! number of time samples to process
 INTEGER, PARAMETER :: lon = 4 ! number of longitude grid cells
 INTEGER, PARAMETER :: lat = 3 ! number of latitude grid cells
 INTEGER, PARAMETER :: lev = 5 ! number of standard pressure levels
 INTEGER, PARAMETER :: n2d = 4 ! number of IPCC Table A1a fields to be
 ! output.
 INTEGER, PARAMETER :: n3d = 2 ! number of IPCC Table A1c fields to
 ! be output.

 ! Define tables associating the user's variables with IPCC standard
 ! output variables. The user may choose to make this association in a
 ! different way (e.g., by defining values of pointers that allow him
 ! to directly retrieve data from a data record containing many
 ! different variables), but in some way the user will need to map his
 ! model output onto the Tables specifying the MIP standard output.

 16

 ! ----------------------------------

 ! My variable names for IPCC Table A1c fields
 CHARACTER (LEN=5), DIMENSION(n3d) :: &
 varin3d=(/'U', 'T'/)

 ! Units appropriate to my data
 CHARACTER (LEN=5), DIMENSION(n3d) :: &
 units3d=(/'m s-1', 'K ' /)

 ! Corresponding IPCC Table A1c entry (variable name)
 CHARACTER (LEN=2), DIMENSION(n3d) :: entry3d = (/'ua', 'ta' /)

 ! My variable names for IPCC Table A1a fields
 CHARACTER (LEN=8), DIMENSION(n2d) :: &
 varin2d=(/ 'LATENT ', 'TSURF ', 'SOIL_WET', 'PSURF ' /)

 ! Units appropriate to my data
 CHARACTER (LEN=6), DIMENSION(n2d) :: &
 units2d=(/ 'W m-2 ', 'K ', 'kg m-2', 'Pa ' /)

 CHARACTER (LEN=4), DIMENSION(n2d) :: &
 positive2d= (/ 'down', ' ', ' ', ' ' /)

 ! Corresponding IPCC Table A1a entry (variable name)
 CHARACTER (LEN=5), DIMENSION(n2d) :: &
 entry2d = (/ 'hfls ', 'tas ', 'mrsos', 'ps ' /)

! uninitialized variables used in communicating with CMOR:
! ---

 INTEGER :: error_flag
 INTEGER, DIMENSION(n2d) :: var2d_ids
 INTEGER, DIMENSION(n3d) :: var3d_ids
 REAL, DIMENSION(lon,lat) :: data2d
 REAL, DIMENSION(lon,lat,lev) :: data3d
 DOUBLE PRECISION, DIMENSION(lat) :: alats
 DOUBLE PRECISION, DIMENSION(lon) :: alons
 DOUBLE PRECISION, DIMENSION(lev) :: plevs
 DOUBLE PRECISION, DIMENSION(1) :: time
 DOUBLE PRECISION, DIMENSION(2,1):: bnds_time
 DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat
 DOUBLE PRECISION, DIMENSION(2,lon) :: bnds_lon

 INTEGER :: ilon, ilat, ipres, ilev, itim

 ! Other variables:
 ! ---------------------

 INTEGER :: it, m

 ! ================================
 ! Execution begins here:
 ! ================================

 ! Read coordinate information from model output into arrays that will
 ! be passed to CMOR.
 ! Read latitude, longitude, and pressure coordinate values into
 ! alats, alons, and plevs, respectively. Also generate latitude and
 ! longitude bounds, and store in bnds_lat and bnds_lon, respectively.

 17

 ! Note that all variable names in this code can be freely chosen by
 ! the user.

 ! The user must write the subroutine that fills the coordinate arrays
 ! and their bounds with actual data. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 ! *** call to user-written subroutine ***

 call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

 ! Specify path where tables can be found and indicate that existing
 ! netCDF files should be overwritten.

 error_flag = cmor_setup(inpath='Test', netcdf_file_action='replace')

 ! Define dataset as output from the GICC model (first member of an
 ! ensemble of simulations) run under IPCC 2xCO2 equilibrium
 ! experiment conditions, and provide information to be included as
 ! attributes in all CF-netCDF files written as part of this dataset.

 error_flag = cmor_dataset(&
 outpath='Test', &
 experiment_id='2xCO2 equilibrium experiment', &
 institution= &
 'GICC (Generic International Climate Center, ' // &
 'Geneva, Switzerland)', &
 source='GICCM 2002(giccm_0_brnchT_itea_2, T63L32)', &
 calendar='noleap', &
 realization=1, &
 contact = 'Rusty Koder (koder@middle_earth.net) ', &
 history='Output from archive/giccm_03_std_2xCO2_2256.', &
 comment='Equilibrium reached after 30-year spin-up ' // &
 'after which data were output starting with nominal '// &
 'date of January 2030', &
 references='Model described by Koder and Tolkien ' // &
 '(J. Geophys. Res., 2001, 576-591). Also ' // &
 'see http://www.GICC.su/giccm/doc/index.html ' // &
 ' 2XCO2 simulation described in Dorkey et al. '// &
 '(Clim. Dyn., 2003, 323-357.)')

 ! Define all axes that will be needed

 ilat = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='latitude', &
 units='degrees_north', &
 length=lat, &
 coord_vals=alats, &
 cell_bounds=bnds_lat)

 ilon = cmor_axis(&
 table='IPCC_table_AA1', &
 table_entry='longitude', &
 length=lon, &
 units='degrees_east', &
 coord_vals=alons, &
 cell_bounds=bnds_lon)

 ipres = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='pressure', &
 units='Pa', &

 18

 length=lev, &
 coord_vals=plevs)

 ! note that the time axis is defined next, but the time coordinate
 ! values and bounds will be passed to cmor through function
 ! cmor_write (later, below).

 itim = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='time', &
 units='days since 1970-1-1', &
 length=ntimes, &
 interval='20 minutes')

 ! Define variables appearing in IPCC table A1c that are a function of pressure
 ! (3-d variables)

 DO m=1,n3d
 var3d_ids(m) = cmor_variable(&
 table='IPCC_table_A1', &
 table_entry=entry3d(m), &
 units=units3d(m), &
 axis_ids=(/ ilon, ilat, ipres, itim /), &
 missing_value=-1.0e28, &
 original_name=varin3d(m))
 ENDDO

 ! Define variables appearing in IPCC table A1a (2-d variables)

 DO m=1,n2d
 var2d_ids(m) = cmor_variable(&
 table='IPCC_table_A1', &
 table_entry=entry2d(m), &
 units=units2d(m), &
 axis_ids=(/ ilon, ilat, itim /), &
 missing_value=-1.0e28, &
 positive=positive2d(m), &
 original_name=varin2d(m))
 ENDDO

 PRINT*, ' '
 PRINT*, 'completed everything up to writing output fields '
 PRINT*, ' '

 ! Loop through history files (each containing several different fields,
 ! but only a single month of data, averaged over the month). Then
 ! extract fields of interest and write these to netCDF files (with
 ! one field per file, but all months included in the loop).

 time_loop: DO it=1, ntimes

 ! In the following loops over the 3d and 2d fields, the user-written
 ! subroutines (read_3d_input_files and read_2d_input_files) retrieve
 ! the requested IPCC table A1c and table A1a fields and store them in
 ! data3d and data2d, respectively. In addition a user-written code
 ! (read_time) retrieves the time and time-bounds associated with the
 ! time sample (in units of 'days since 1970-1-1', consistent with the
 ! axis definitions above). The bounds are set to the beginning and
 ! the end of the month retrieved, indicating the averaging period.

 ! The user must write a code to obtain the times and time-bounds for
 ! the time slice. The following line is simply a place-holder for

 19

 ! the user's code, which should replace it.

 call read_time(it, time, bnds_time)

 ! Cycle through the 3-d fields (stored on pressure levels),
 ! and retrieve the requested variable and append each to the
 ! appropriate netCDF file.

 DO m=1,n3d

 ! The user must write the code that fills the arrays of data
 ! that will be passed to CMOR. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 call read_3d_input_files(it, varin3d(m), data3d)

 ! append a single time sample of data for a single field to
 ! the appropriate netCDF file.

 error_flag = cmor_write(&
 var_id = var3d_ids(m), &
 data = data3d, &
 ntimes_passed = 1, &
 time_vals = time, &
 time_bnds = bnds_time)

 IF (error_flag < 0) THEN
 ! write diagnostic messages to standard output device
 write(*,*) ' Error encountered writing IPCC Table A1c ' &
 // 'field ', entry3d(m), ', which I call ', varin3d(m)
 write(*,*) ' Was processing time sample: ', time

 END IF

 END DO

 ! Cycle through the 2-d fields, retrieve the requested variable and
 ! append each to the appropriate netCDF file.

 DO m=1,n2d

 ! The user must write the code that fills the arrays of data
 ! that will be passed to CMOR. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 call read_2d_input_files(it, varin2d(m), data2d)

 ! append a single time sample of data for a single field to
 ! the appropriate netCDF file.

 error_flag = cmor_write(&
 var_id = var2d_ids(m), &
 data = data2d, &
 ntimes_passed = 1, &
 time_vals = time, &
 time_bnds = bnds_time)

 IF (error_flag < 0) THEN
 ! write diagnostic messages to standard output device
 write(*,*) ' Error encountered writing IPCC Table A1a ' &
 // 'field ', entry2d(m), ', which I call ', varin2d(m)
 write(*,*) ' Was processing time sample: ', time

 20

 END IF

 END DO

 END DO time_loop

 ! Close all files opened by CMOR.

 error_flag = cmor_close()

 print*, ' '
 print*, '******************************'
 print*, ' '
 print*, 'ipcc_test_code executed to completion '
 print*, ' '
 print*, '******************************'

END PROGRAM ipcc_test_code

 21

Sample Portion of a MIP Table (which will be made available by MIP

organizers to contributing groups)

The user normally need not be concerned with the details contained in this table.

cmor_version: 0.8 ! version of CMOR that can read this table
cf_version: 1.0 ! version of CF that output conforms to
project_id: IPCC ! project id
table_id: Table A1 ! table id
table_date: 7 April 2004 ! date this table was constructed

expt_id_ok: 'committed climate change experiment' ! official name(s) of
expt_id_ok: 'SRES A2 experiment' ! project's experiments
expt_id_ok: 'control experiment (for committed climate change experiment)'
expt_id_ok: '720 ppm stabilization experiment (SRES A1B)'
expt_id_ok: '550 ppm stabilization experiment (SRES B1)'
expt_id_ok: '1%/year CO2 increase experiment (to doubling)'
expt_id_ok: '1%/year CO2 increase experiment (to quadrupling)'
expt_id_ok: 'control experiment (for 1%/year CO2 run)'
expt_id_ok: '2xCO2 equilibrium experiment'
expt_id_ok: 'control experiment (for 2xCO2 run)'

magic_number: -1 ! used to check whether this file has been
 ! altered from the official version.
 ! should be set to number of non-blank
 ! characters in file.
approx_interval: 30. ! approximate spacing between successive time
 ! samples (in units of the output time
 ! coordinate.
missing_value: 1.e20 ! value used to indicate a missing value
 ! in arrays output by netCDF as 32-bit IEEE
 ! floating-point numbers (float or real)

!*#
!
! SUBROUTINE ARGUMENT DEFAULT INFORMATION
!
!*#
!
! set default specifications for subroutine arguments to:
! required/indeterminate/optional/ignored/forbidden
! (indeterminate may or may not be required information, but is not always
! required as an argument of the function call)
!
!
!============
subroutine_entry: cmor_axis
!============
!
required: table axis_name units length coord_vals cell_bounds
ignored: interval
!
!============
subroutine_entry: cmor_variable
!============
!
required: table table_entry units axis_ids
indeterminate: missing_value
optional: tolerance original_name history comment

 22

ignored: positive
!
!============
subroutine_entry: cmor_write
!============
!
required: var_id data
indeterminate: ntimes_passed time_vals time_bnds store_with
optional: file_suffix
!
!*#
!
! TEMPLATE FOR AXES
!
!*#
!
!============
!axis_entry: ! (required)
!============
!
! Override default argument specifications for cmor_axis
!------------
! acceptable arguments include units length coord_vals cell_bounds interval
!required: ! (default: table axis_name units length
! coord_vals cell_bounds)
!indeterminate:
!optional:
!ignored: ! (default: interval)
!forbidden:
!------------
!
! Axis attributes:
!----------------------------------
!standard_name: ! (required)
!units: ! (required)
!axis: ! X, Y, Z, T (default: undeclared)
!positive: ! up or down (default: undeclared)
!long_name: ! (default: undeclared)
!----------------------------------
!
! Additional axis information:
!----------------------------------
!out_name: ! (default: same as axis_entry)
!type: ! double (default), real, character, integer
!stored_direction: ! increasing (default) or decreasing
!valid_min: ! type: double precision (default: no check performed
!valid_max: ! type: double precision (default: no check performed
!requested: ! space-separated list of requested coordinates
 ! (default: undeclared)
!requested_bounds: ! space-separated list of requested coordinate bounds
 ! (default: undeclared)
!tol_on_requests: ! fractional tolerance for meeting request
 ! (default=1.e-3, which is used in the formula:
 ! eps = MIN((tol*interval between grid-points)
 ! and (1.e-3*tol*coordinate value)))
!value: ! of scalar (singleton) dimension
!bounds_values: ! of scalar (singleton) dimension bounds
!----------------------------------
!
!*#
!
! TEMPLATE FOR VARIABLES
!

 23

!*#
!
!============
!variable_entry: ! (required)
!============
!
! Override default argument specifications for cmor_variable
!------------
! acceptable arguments include file_suffix missing_value tolerance
! original_name history comment positive
!required: ! (default: table table_entry units axis_ids)
!indeterminate: ! (default: file_suffix missing_value)
!optional: ! (default: original_name history comment)
!ignored: ! (default: positive)
!forbidden:
!------------
!
! Variable attributes:
!----------------------------------
!standard_name: ! (required)
!units: ! (required)
!cell_methods: ! (default: undeclared)
!long_name: ! (default: undeclared)
!comment: ! (default: undeclared)
!----------------------------------
!
! Additional variable information:
!----------------------------------
!dimensions: ! (required) (scalar dimension(s) should appear
 ! last in list)
!out_name: ! (default: variable_entry)
!type: ! real (default), double, integer
!positive: ! up or down (default: undeclared)
!valid_min: ! type: real (default: no check performed)
!valid_max: ! type: real (default: no check performed)
!ok_min_mean_abs: ! type: real (default: no check performed)
!ok_max_mean_abs: ! type: real (default: no check performed)
!----------------------------------
!
!
!*#
!
! AXIS INFORMATION
!
!*#
!
!============
axis_entry: longitude
!============
!
!------------
!
! Axis attributes:
!----------------------------------
standard_name: longitude
units: degrees_east
axis: X
long_name: longitude
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: lon

 24

valid_min: 0. ! CMOR will add n*360 to input values
 ! (where n is an integer) to ensure
 ! longitudes are in proper range. The
 ! data will also be rearranged
 ! appropriately.
valid_max: 360. ! see above comment.
!----------------------------------
!
!
!=============
axis_entry: latitude
!=============
!
! Axis attributes:
!----------------------------------
standard_name: latitude
units: degrees_north
axis: Y
long_name: latitude
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: lat
valid_min: -90.
valid_max: 90.
!----------------------------------
!
!
!============
axis_entry: time
!============
!
! Override default argument specifications for cmor_axis
!------------
required: interval
indeterminate: coord_vals cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: time
units: days since ? ! the user's basetime will be used
axis: T
long_name: time
!----------------------------------
!
!
!============
axis_entry: pressure
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: air_pressure
units: Pa
axis: Z
positive: down

 25

long_name: pressure
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: plev
valid_min: 0.
valid_max: 110000.
requested: 10000. 20000. 30000. 40000. 50000.
!----------------------------------
!
!
!============
axis_entry: height1
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: height
units: m
axis: Z
positive: up
long_name: height
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: height
valid_min: 0.
valid_max: 10.
value: 2.
!----------------------------------
!
!
!============
axis_entry: height2
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: height
units: m
axis: Z
positive: up
long_name: height
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: height
valid_min: 0.
valid_max: 30.
value: 10.

 26

!----------------------------------
!
!============
axis_entry: depth1
!============
!
!------------
!
! Axis attributes:
!----------------------------------
standard_name: depth
units: m
axis: Z
positive: down
long_name: depth
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: depth
valid_min: 0.0
valid_max: 1.0
value: 0.05
bounds_values: 0.0 0.1
!----------------------------------
!
!
!*#
!
! VARIABLE INFORMATION
!
!*#
!
!============
variable_entry: tas
!============
!
! Variable attributes:
!----------------------------------
standard_name: air_temperature
units: K
cell_methods: time: mean
long_name: Surface Air Temperature
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time height1
valid_min: 200.
valid_max: 340.
ok_min_mean_abs: 270.
ok_max_mean_abs: 300.
!----------------------------------
!
!
!============
variable_entry: hfls
!============
!
! Override default argument specifications for cmor_variable
!------------
required: positive
!------------

 27

!
! Variable attributes:
!----------------------------------
standard_name: upward_surface_latent_heat_flux
units: W m-2
cell_methods: time: mean
long_name: Surface Latent Heat Flux
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
positive: up
valid_min: -50.
valid_max: 300.
ok_min_mean_abs: 20.
ok_max_mean_abs: 150.
!----------------------------------
!
!
!============
variable_entry: mrsos
!============
!
! Variable attributes:
!----------------------------------
standard_name: moisture_content_of_soil_layer
units: kg m-2
cell_methods: time: mean
long_name: Moisture in Upper 0.1 m of Soil Column
comment: includes subsurface frozen water but not surface snow and ice
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time depth1
!----------------------------------
!
!
!============
variable_entry: ua
!============
!
! Variable attributes:
!----------------------------------
standard_name: eastward_wind
units: m s-1
cell_methods: time: mean
long_name: Zonal Wind Component
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude pressure time
valid_min: -200.
valid_max: 300.
ok_min_mean_abs: 0.1
ok_max_mean_abs: 100.
!----------------------------------
!
!
!============
variable_entry: ta

 28

!============
!
! Variable attributes:
!----------------------------------
standard_name: air_temperature
units: K
cell_methods: time: mean
long_name: Temperature
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude pressure time
valid_min: 150.
valid_max: 350.
ok_min_mean_abs: 200.
ok_max_mean_abs: 300.
!----------------------------------
!
!
!============
variable_entry: pr
!============
!
! Variable attributes:
!----------------------------------
standard_name: precipitation
units: kg m-2 s-1
cell_methods: time: mean
long_name: Precipitation
comment: includes all types (rain, snow, large-scale, convective, etc.)
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
valid_min: 0.0
valid_max: 1.e-4
ok_min_mean_abs: 1.e-6
ok_max_mean_abs: 5.e-5
!----------------------------------
!
!
!============
variable_entry: cl
!============
!
! Variable attributes:
!----------------------------------
standard_name: cloud_area_fraction
units: %
cell_methods: time: mean
long_name: Total Cloud Fraction
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude zlevel time
valid_min: 0.0
valid_max: 100.0
ok_min_mean_abs: 10.0
ok_max_mean_abs: 90.0
!----------------------------------

 29

!
!
!============
variable_entry: hfogo
!============
!
! Variable attributes:
!----------------------------------
standard_name: northward_ocean_heat_transport
units: W
cell_methods: time: mean
long_name: Northward Ocean Heat Transport
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: latitude region time
valid_min: -4.e15
valid_max: 4.e15
ok_min_mean_abs: 0.0
ok_max_mean_abs: 4.e15
!----------------------------------
!
!
!============
variable_entry: ps
!============
!
! Variable attributes:
!----------------------------------
standard_name: surface_air_pressure
units: Pa
cell_methods: time: mean
long_name: Surface Pressure
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
valid_min: 0.5e5
valid_max: 1.2e5
ok_min_mean_abs: 0.9e5.
ok_max_mean_abs: 1.1e5
!----------------------------------
!

 30

